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Neural networks construction application to the kinematical
analysis of the five-point suspension

GAMIL A. AZIM1∗, HAZEM A. ATTIA2

In this paper, a General Neural Networks Regression (GNNR) is presented.
The position analysis of multi-link five-point suspension system is solved using
GNNR. The mechanism of wheel suspension is a multi-body system (MBS)
which is a system of bodies (in this case rigid links of given length) whose
mutual position is bounded by geometrical constraints (joints) and by active
kinematical driving constraints in the form of prescribed motion related to the
degrees-of-freedom (DOF) of the given mechanism. GNNR is first trained with
coordinates of the defined points and input driving variables. After training,
performance is measured by having the network generate the coordinates of
the defined points in terms of driving input variables. It is found that GNNR
provides a simple and effective way to model the spatial kinematics of the
five point’s suspension and eliminate the convergence problems associated with
algorithmic solution methods.

K e y w o r d s: General Neural Networks Regression, kinematical analysis

1. Introduction

Artificial Neural Networks (ANNs) are massively parallel, highly connected
structures consisting of a number of simple, nonlinear processing units. Due to
their massively parallel structure, they can perform computation at very high rate
if implemented on a dedicated hardware. Moreover of their adaptive nature, they
can learn the characteristics of input signals and adapt to changes in the data.
The nonlinear nature of ANNs can help in performing function approximation
and signal filtering operations which are beyond optimal linear techniques. Feed
Forward Neural Networks (FFNNs) are the basic types of neural networks capable
of approximating generic classes of functions, including continuous and integrable
ones.
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An important class of Feed Forward Neural Networks is Multi Layers Percep-
trons Neural Networks (MLPNNs). The MLPNNs have features (data learning)
such as the ability to learn and generalize smaller training set requirements, fast
operation, and easy implementation. MLPNN consists of various layers: an input
layer, an output layer and one or more hidden layers. The three-layer network with
sigmoid activation function is capable to produce a decision function with enough
hidden units. The input layer contains the input nodes which interact with the
outside environment. The input units are only buffer units that pass the signal
without changing it. The hidden layer size is left to the appreciation of the user
that will estimate the number of hidden nodes by his experience or by trial and
error. This number must not be too large to avoid waste of computations and slow
convergence process and not too low to make the network capable to absorb the
set of training. The output layer represents the number of nodes which are equal
to the number of classes, each output node representing a class [1–3].

2. Radial Basis Functions

Radial Basis Function (RBF) is a type of neural network employing a hidden
layer of radial units and an output layer of linear units, and is characterized by
reasonably fast training and reasonably compact networks. Radial functions are
simply a class of functions in principle, they could be employed in any sort of
networks (single-layer or multi-layer). However RBF networks have traditionally
been associated with radial functions in a single layer, such as is shown in Fig. 1.

The kinematical analysis of a given mechanism and the determination of the
displacements, velocities and accelerations of its various members is a classical
engineering problem that can be analysed by either graphical or analytical methods.
Graphical methods are nowadays not used in practice, due to the availability of

Fig. 1. RBF Neural Network.
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Computer-Aided-Engineering (CAE) tools. Graphical methods are introduced only
in the education from methodological point of view and they are restricted for
planar systems. The analytical methods used can be classified according to the type
of coordinates chosen to determine their configuration and specify their constraints.
Some formulations use a large set of absolute coordinates [4, 5]. The position
and orientation of the rigid links in the mechanism are described with respect to
the global reference coordinate system. Other formulations use sets of relative
coordinates [5, 6], where the position of each link is defined with respect to the
previous link by means of relative joint coordinates that depend on the type of the
joint used.

In this paper, a GNNR is presented and applied to solve the position analysis
problem of a multi-link five-point suspension system. The position of different links
in the suspensions is carried out in terms of the rectangular Cartesian coordinates
of some defined points in the links and at the joints. Geometrical constraints are
introduced to fix the relative position between the points belonging to the same
rigid link. Solution of the geometrical constraints gives the coordinates of the
defined points for known driving variables. The GNNR is first trained with the
coordinates of the defined points and the input driving variables. After training,
performance is measured by using the network to generate the coordinates of the
defined points in terms of driving input variables.

3.1 M od e l l i n g o f t h e m u l t i - l i n k
f i v e - p o i n t s u s p e n s i o n s y s t e m

The multi-link five-point suspension system is usually used for rear driven
axles of current productions of Mercedes-Benz cars, Mazda 929, some BMW and
Toyota Supra cars [7]. The mechanical system consists of the main chassis, a multi-
-link five-point suspension system, and the wheel as shown in Fig. 2. The system
has three degrees of freedom (DOF). Since our goal is the study of the motion of
the suspension system only, the chassis, it is constrained to move vertically upward
or downward, only one DOF out of its six DOF remains. The wheel has one DOF
corresponding to the rolling motion. Since the suspension mechanism connects the
driven wheel to the chassis (specifically to the axle carrier) by rubber mountings, it
can be simulated as five binary links connecting the chassis and the wheel knuckle
through spherical joints at both ends of each link. Thus, the suspension system
consists of five links and ten spherical joints, and has only one DOF (see Fig. 3).

3.2 P o s i t i o n a n a l y s i s

The configuration of the mechanism can be specified by defining a set of points
on the links and at the joints. Figure 3 presents the mechanism with the assigned
points. Each binary link is replaced by two points located at the centre of the
spherical joints at both ends, while the adjacent links are sharing common points.
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Fig. 2. The multi-link five point suspension system.

The whole mechanism is then replaced by ten points. Points 1, . . . , 5, that are
located at the chassis, are known points. The Cartesian coordinates of the unknown
points 6, . . . , 10, located on the knuckle, define the motion variables. Therefore,
15 constraint equations are needed to be solved for the 15 unknown Cartesian
coordinates. The initial positions of points 1, . . . , 5 are known from the driver
data.

The constraints are either geometrical or kinematical ones. Geometrical con-
straints are distance constraints that fix the relative positions of the points on a
rigid link of the mechanism [8]. The geometrical constraint equations are expressed

Fig. 3. The multi-link five point suspension system with the assigned points.
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in the Cartesian coordinates of the points as follows:

(x6 − x1)2 + (y6 − y1)2 + (z6 − z1)2 − d2
6,1 = 0, (1.1)

(x7 − x2)2 + (y7 − y2)2 + (z7 − z2)2 − d2
7,2 = 0, (1.2)

(x8 − x3)2 + (y8 − y3)2 + (z8 − z3)2 − d2
8,3 = 0, (1.3)

(x9 − x4)2 + (y9 − y4)2 + (z9 − z4)2 − d2
9,4 = 0, (1.4)

(x10 − x5)2 + (y10 − y5)2 + (z10 − z5)2 − d2
10,5 = 0, (1.5)

(x7 − x6)2 + (y7 − y6)2 + (z7 − z6)2 − d2
7,6 = 0, (1.6)

(x8 − x6)2 + (y8 − y6)2 + (z8 − z6)2 − d2
8,6 = 0, (1.7)

(x9 − x6)2 + (y9 − y6)2 + (z9 − z6)2 − d2
9,6 = 0, (1.8)

(x10 − x6)2 + (y10 − y6)2 + (z10 − z6)2 − d2
10,6 = 0, (1.9)

(x8 − x7)2 + (y8 − y7)2 + (z8 − z7)2 − d2
8,7 = 0, (1.10)

(x9 − x7)2 + (y9 − y7)2 + (z9 − z7)2 − d2
9,7 = 0, (1.11)

(x10 − x7)2 + (y10 − y7)2 + (z10 − z7)2 − d2
10,7 = 0, (1.12)

(x9 − x8)2 + (y9 − y8)2 + (z9 − z8)2 − d2
9,8 = 0, (1.13)

(x10 − x8)2 + (y10 − y8)2 + (z10 − z8)2 − d2
10,8 = 0, (1.14)

where di,j is the distance between points i and j belonging to the same rigid link,
and xi, yi and zi are the Cartesian coordinates of point i. Kinematical constraints
result from the conditions imposed by the kinematical joints on the relative motion
between the bodies they comprise. Points located at the centre of a spherical
joint or at the axis of a revolute joint automatically eliminate all the kinematical
constraints due to these joints. Moreover, driving constraints are added to the
above constraints as functions of the input driving angular position (see Fig. 3) in
the form [11]

(z6 − z1)− d6,1 cos θ = 0. (1.15)

Equation (1) expresses the required 15 independent constraint equations in terms
of the Cartesian coordinates of the assigned points. Given the set of the known
coordinates of points 1, . . . , 5 and the driving variable θ at each instant, the non-
linear Eq. (1) can be solved by any iterative numerical method [9] to determine
the 15 unknown Cartesian coordinates of points 6, . . . , 10.
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4. Neural implementation and parameters

GRNN is a kind of radial basis network that is often used for function approx-
imation. We use Matlab NEWGRNN function to design a generalized regression
neural network, which consists of two-layer network. The first layer has radial basis
transfer function (see Fig. 4), calculates weighted inputs with Euclidean distance
weight function and net input with product net input function. The second layer
has hard limit transfer function neurons. We implemented GRNN as follows:

net = newgrnn(P,T, S).

P is R × Q matrix of Q input vectors and T is S × Q matrix of Q target class
vectors. S is spread of radial basis functions.

Fig. 4. Radial function is a transfer function, y = exp(−x2).

4.1 T r a i n i n g a n d t e s t i n g s e t s

The data were divided in two sets, one for training and one for testing. The
training set for K.F.-points suspension is represented by ((ti,Θi), (p1, p2, p3, p4, p5)i)
for i = 1 to 36, and the testing set for i = 37, . . . , 82 with pm = (xm, ym, zm) in the
points. We constructed networks of two inputs, which are represented by (t,Θ),
and fifteen outputs correspond to the coordinates of the five points. The weights
were initialized randomly. The learning rates were chosen as 0.09. Table 1 com-
pares the coordinates of the 5 points obtained using GNNR with those evaluated
using classical numerical method. The results ensure the validity and accuracy of
the suggested GNNR method (see in Figs. 5–8).
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T ab l e 1. Comparison between GNNR and a classical numerical solution (N. S.)

GNNR N. S.

Θ = 0.71 Θ = 0.71

−1.2590 −1.2051

0.3080 0.2009

0.1534 0.2517

−1.2090 −1.1220

0.2172 0.0163

0.3225 0.3226

−1.1892 −1.1129

0.1672 0.0075

0.2742 0.2452

−1.2523 −1.2122

0.2418 0.1872

0.0906 0.1535

−1.1089 −1.0363

0.2766 0.1199

0.2516 0.2841

Fig. 5. The neural outputs for Θ = 0.71 (15 coordinates of the 5 points).
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Fig. 6. The outputs of numerical solution (a) and neural solution (b): 36 pairs (t, θ)
and the corresponding 15 ∗ 36 = 540 coordinates.
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Fig. 7. The outputs of neural solution (a) and numerical solution (b): 6 pairs (t, θ)
and the corresponding 15 ∗ 6 = 90 coordinates.
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Fig. 8. The neural outputs for 45 pairs (t,Θ), (15 coordinates of the 5 points).

5. Discussion and conclusions

The kinematical analysis of spatial mechanisms is classically done by numerical
methods which can be classified according to the type of coordinates chosen. The
algebraic constraint equations are introduced to represent the kinematical joints
that connect the rigid bodies and are expressed in terms of the system of coordinates
chosen. These constraint equations are algebraic non-linear equations whose non-
-linearity depends on the complexity of the mechanism and the coordinates used.
The numerical solution of this system of non-linear equations, known as the finite
displacement problem, has many essential problems. The most important problem
is the convergence problem which depends generally on the initial guess of the
unknown variables and the nature of nonlinearity. It is known that in the case of
complex spatial mechanisms, if the initial guess is not properly chosen, it is very
difficult to reach convergence. Even in the case of convergence, the complexity
of the mechanism affects greatly the number of iterations and consequently, the
computations needed, which determines the efficiency. The lengthy computations
affect to a great extent the accuracy as well as computational time.

Utilizing the neural networks solves entirely the convergence problem and gets
rid of its disadvantages which guarantees the possibility of solving the nonlinear
problem without large time consuming.

In this paper, a General Neural Networks Regression (GNNR) is presented.
The position analysis of multi-link five-point suspension system is solved using
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GNNR. The position of the different links in the suspensions is carried out in
terms of the rectangular Cartesian coordinates of some defined points in the links
and at the joints. GNNR is first trained with coordinates of the defined points and
input driving variables. After training, performance is measured by having the
network to generate the coordinates of the defined points in terms of driving input
variables. It is found that GNNR provides a simple and effective way to model the
spatial kinematics of the five point’s suspension and eliminates the convergence
problems associated with algorithmic solution methods.
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